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Summary 

This article reviews evidence on the relationship between SARS-CoV-2 dose, infection, and COVID-19 

outcomes, identifies gaps in understanding, and suggests future research opportunities. While 

existing data suggest a dose-infection relationship, limited, inconsistent surrogate-based evidence 

exists for a dose-severity relationship. 
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Abstract 

The relationship between SARS-CoV-2 dose, infection, and COVID-19 outcomes remains poorly 

understood. This review summarizes the existing literature regarding this issue, identifies gaps in 

current knowledge, and suggests opportunities for future research. In humans, host characteristics 

including age, sex, comorbidities, smoking, and pregnancy are associated with severe COVID-19. 

Similarly in animals,  host factors are strong determinants of disease severity although most animal 

infection models manifest clinically with mild to moderate respiratory disease. The influence of 

variants of concern as it relates to minimal infectious dose, consequence of overall pathogenicity, 

and disease outcome in dose-response remain unknown. Epidemiologic data suggest a dose-

response relationship for infection contrasting with limited and inconsistent surrogate-based 

evidence between dose and disease severity. Recommendations include the design of future 

infection studies in animal models to investigate inoculating dose on outcomes and the use of better 

proxies for dose in human epidemiology studies.  

 

Keywords: SARS-CoV-2, COVID-19, Infectious dose, Disease severity, Inoculum. 
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INTRODUCTION 
 

The infection process and subsequent disease outcomes of severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) are complex and multifactorial. Recent studies in animals and humans 

address the impact of different exposure routes, the effect of dose on infection and disease 

outcomes, and the potential for greater transmissibility and more severe disease from emerging viral 

variants. However, critical gaps remain in elucidating the relationships between exposure, dose, 

infection, and severity of disease. We review the existing literature regarding SARS-CoV-2 dose, 

infection, and disease outcomes, identify knowledge gaps, and suggest opportunities for future 

research. We focus on evidence for a relationship between infectious dose and COVID-19 severity. 

 

METHODS 

Original studies, narrative and systematic reviews, and meta-analyses in peer-review journals were 

identified using PubMed/MEDLINE. Keywords included “infection,” “SARS-CoV-2,” “COVID-19,” 

“animal,” “human,” “severity,” “comorbidity,” “infectious dose,” “dose,”, “inoculum,” and 

“exposure.” Where available, earlier singular studies were excluded in favor of later reviews. We 

collected and synthesized existing studies on SARS-CoV-2 infectious dose and coronavirus disease 

2019 (COVID-19) severity in animal and human studies. Preprints were considered in the absence of 

peer-reviewed evidence. Theoretical modeling studies were not considered. 

 

SARS-CoV-2 INFECTIOUS DOSE AND VIRAL LOAD 

Viral transmission and infection are complex, probabilistic processes. The major mode of SARS-CoV-2 

transmission is inhalation of respiratory particles containing infectious virions [1]; contact 

transmission occurs less frequently [2]. Viral viability in respiratory particles is influenced by host 

physiology and biology and environmental conditions [3]. Exposure is a function of viable virus 

concentration and contact time (Figure 1A). 

 

SARS-CoV-2 infection is mediated primarily through the angiotensin-converting enzyme 2 (ACE2) 

receptor, found in a variety of tissues including the respiratory tract [4]. An “infectious dose” or 

inoculum,  expressed as minimal infectious dose (the smallest quantity that leads to infection) or 

median infectious dose (ID50, the dose causing infection in 50% of those exposed), represents the 

amount of virus received by an uninfected person resulting in cell invasion, active viral replication, 

and production of infectious virus as well as shedding of detectable viral RNA (Figure 1B) [5]. 

Infectious dose is a function of ongoing virus viability, particle size and concentration, and breathing 

rate. Once inhaled and deposited in the respiratory tract, productive infection depends on the dose 
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overcoming multiple factors, including mucus, ACE2 receptor distribution and expression, and innate 

antiviral immunity in target tissues [6,7]. 

 

Viral RNA load, or “viral load,” which refers to the amount of SARS-CoV-2 nucleic acid in a sample, is 

measured by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and expressed 

as either cycle threshold (Ct) or RNA copies per volume. Viral load does not quantify infectious virus, 

which requires culture-based methods, nor does it correspond to infectious dose. Infectious virus 

capable of initiating infection, replicating, and producing progeny virus is expressed as plaque-

forming units (PFU) or median tissue culture infectious dose (TCID50). There is some evidence linking 

higher viral loads with increased infectiousness [8–10], but the association is not linear. 

Furthermore, diagnostic assays typically do not discriminate between genomic and subgenomic RNA, 

which are only produced during productive viral replication. Thus, qRT-PCR metrics alone cannot be 

used to quantify or infer infectious virus or dose. There is some evidence of an association between 

viral load and COVID-19 severity [11–13], but this association can be highly variable depending on 

viral kinetics during infection course, timing of qRT-PCR testing, and presence of symptoms [14]. 

 

The incubation period for SARS-CoV-2 (from receipt of an infectious dose to symptom onset) is 2-14 

days (median 4-6 days) [15]. Peak shedding of viable virus leading to infectiousness occurs 1-3 days 

before symptom onset to 5 days after [5,16]. Infectious virus is usually not shed beyond 8-10 days 

after symptom onset; viral RNA can be detected in clinical samples for days, weeks, or even months 

[17,18]. Asymptomatic individuals can shed virus and may therefore have a role in transmission, but 

this is less understood as compared to symptomatic individuals [19]. Throughout SARS-CoV-2 

infection, pathophysiological phenomena are complex and variable, resulting in a broad spectrum of 

symptoms and varying clinical course and outcomes. 

 

COVID-19 SEVERITY 

COVID-19 severity has been classified as asymptomatic, mild, moderate, severe, and critical [20,21]. 

Proxies used to assess severity include mortality, intensive care unit (ICU) admission, hospitalization, 

or use of mechanical ventilation.  

 

Several host factors are associated with disease outcomes. Older age (≥ 65 years), male sex, certain 

comorbidities (hypertension, diabetes mellitus, chronic obstructive pulmonary disease, obesity, 

cardiovascular disease, cerebrovascular disease, chronic kidney disease), immunocompromised 

status (e.g., cancer), and smoking are associated with more severe morbidity, ICU admission, 
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invasive mechanical ventilation, disease progression, and increased mortality [22–27]. Pregnancy is 

associated with an increased likelihood of hospitalization, ICU admission, and mechanical 

ventilation, but not mortality [28,29]. In children, severe COVID-19 cases are less frequent than in 

adults, but are not negligible [30]. Multisystem inflammatory syndrome in children and adults is a 

rare, life-threatening condition, for which risk factors remain largely unknown [31,32]. Neither lack 

of comorbidities nor younger age guarantee mild or favorable disease outcomes, suggesting that 

unknown host factors may be significant determinants of COVID-19 severity. Evidence about  post-

acute sequelae of COVID-19 continues to accrue [33,34]. 

 

One critical aspect in assessing severity is understanding that clinical course evolves over time, 

warranting the differentiation of presymptomatic from asymptomatic individuals, the latter 

estimated to be 16-25% of SARS-CoV-2 infections [35–40]. 

 

SARS-CoV-2 VARIANTS 

 

Certain viral characteristics are associated with likelihood of infection and disease severity. Ongoing 

transmission of SARS-CoV-2 has led to the emergence of variants of concern (VOCs) with the 

potential for increased transmissibility, host immune evasion, or more severe outcomes [41,42]. 

Human studies of the SARS-CoV-2 D614G mutant, globally dominant in 2020, consistently found no 

association with clinical outcomes compared to wild-type SARS-CoV-2 [43,44]. More recently, four 

major circulating variants (Alpha, Beta, Gamma, Delta) have emerged in various locations and spread 

to other countries. Epidemiological data suggest that some of these VOCs may result in worse 

clinical outcomes. 

 

Alpha variant (lineage B.1.1.7) has been associated with greater risk of hospitalization (40-63%) and 

death (28–71%) compared to non-VOCs [45–49].  One hospital-based study found no association 

between Alpha variant and severe and fatal COVID-19 [50]. Studies have found that Gamma (lineage 

P.1) infections are more likely to result in hospitalization or death compared to non-Gamma 

infections [51,52]. The Delta variant (lineage B.1.617.2) has emerged as a significant driver of waves 

of infection worldwide and initial observations suggest that it may be associated with an increased 

risk of hospitalization as compared to other variants [53,54]. Hamster studies have shown that Delta 

is more pathogenic than another B.1 lineage variant, independent of dose [55]. 
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DATA FROM ANIMAL STUDIES 

No single wild-type animal model replicates the full range of human disease from asymptomatic or 

mild symptoms to severe or fatal health outcomes. While viral RNA has been found in the lung, 

brain, liver, kidney, spleen and gastrointestinal tract in nonhuman primates (NHPs), hamsters and 

ferrets, there are no studies in any animal model that fully investigate the long-term effects of 

infection [56]. 

 

NHPs have emerged as reasonable higher-order species for COVID-19 pathogenesis, vaccine, and 

therapeutic studies. The COVID-19 rhesus macaque model uses a large mucosal dose resulting in 

mild upper respiratory infection that resolves in 14 to 21 days [57–63] and models the milder form 

of the disease in humans. Hamsters and transgenic/transformed human ACE2 (hACE2) mice, in 

contrast, are the predominant rodent models in use [64–69] and progress to severe pathologies 

from experimental mucosal infection. Ferrets, which develop mild symptoms only in the upper 

respiratory system, have limited utility [70–72]. 

 

Most COVID-19 animal infection models require high doses – 104 to 106 TCID50 or PFU – delivered to 

the upper mucosa to produce clinical disease. There are no reports in the literature of attempts to 

empirically determine a minimum infectious dose in the macaque COVID-19 model using any NHP 

species. Rodent studies (hamsters) show a correlation between viral load and dose; the ID50 for 

hamsters has been determined at about 5 TCID50 [73]. 

 

Route of exposure is a key factor in animal models of COVID-19 and can influence severity, kinetics 

and sites of infection. Early studies in NHPs showed preferential infection when rhesus macaques 

received 106 TCID50 by conjunctival and intratracheal but not intragastric routes [74]. Although the 

conjunctival route resulted in infection, disease was milder compared with the intratracheal route. 

This contrasts with other NHP studies that did not find severity differences attributable to the route 

of exposure [62,75]. Route influences clinical outcomes in rodent models as well. Aerosol exposure 

in hamsters accelerated and worsened clinical signs even if dosed at more than one log lower than 

mucosal exposure (1.5x103 vs. 8x104 TCID50) [76]. More lung inflammation and disease symptoms 

were observed in hamsters receiving 105 PFU by intranasal than oral inoculation; oral and fecal 
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shedding were similar by both routes [77]. This may be related more to viral fitness than infectious 

dose, as the Alpha variant outcompeted an earlier A lineage variant in hamsters exposed to either 

virus by the aerosol route [78]. 

 

Although no transmission studies have been reported in NHPs, rodents (hamsters) and ferrets have 

been shown to successfully transmit to naïve animals by contact, fomites, and aerosol routes [70,79–

82]. Quantitative estimation of dose from infected to naïve animals has not been done and is 

impossible to accomplish, thus SARS-CoV-2 transmission studies rely on observation as a qualitative 

measure of dose. 

 

Severe disease outcomes related to age, sex, and comorbidities have been replicated in NHPs 

[62,75,83], hamsters [84,85], and some transgenic mice models [86–88]. The latter must be carefully 

interpreted, because transgenic hACE2 species may replicate infection or disease in a different 

manner than humans. Young (4-6 week) transgenic mice expressing hACE2 with a cytokeratin 18 

promoter (K18-hACE2 mice) showed greater and more rapid weight loss in the high-dose (103 TCID50) 

vs. low-dose group (104 TCID50) and uniform lethality in the high-dose group. All mice shed SARS-

CoV-2 and developed pulmonary pathology following SARS-CoV-2 inoculation, with limited dose-

dependent differences [89]. Another study with K18-hACE2 mice that assessed doses at 103, 104, and 

105 PFU showed 0, 50%, and 100% lethality, respectively, suggesting an LD50 of 104 PFU [90]. 

 

Some studies in animals with inducible comorbidities (i.e., diabetes, obesity, or compromised 

immunity) replicate serious health outcomes in young animals, as seen in younger humans with 

similar conditions. For example, among cyclophosphamide-treated hamsters (representing 

immunosuppression), those exposed intranasally to 102, 103 and 104 PFU showed significant weight 

loss compared to mock-challenged hamsters; viral shedding continued until cyclophosphamide 

treatment ended after which all animals recovered. An intranasal dose of 104 PFU was lethal in all 

exposed RAG2 knockout hamsters, which are unable to produce functional T or B cells [91]. 

DATA FROM EPIDEMIOLOGIC STUDIES 

Observational epidemiologic studies can provide insight into the relationships between dose and 

infection and dose and disease outcomes, but many have methodologic limitations. For example, 

SARS-CoV-2 transmission is reported more frequently in indoor spaces, particularly when poorly 
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ventilated or crowded, compared to outdoor settings  [92,93]. This suggests that infection is less 

likely in settings with lower virus concentrations, but in most cases no quantitative assessment of 

dose is reported. Instead, proxies have been used, such as the route and duration of exposure, 

proximity to an infectious source, number of contacts with infected sources, source infectiousness 

measured by infectious virus concentration, use of respiratory protection, and environment in which 

exposure occurs. Proxies can have important limitations, however; for example, many cannot be 

directly or continuously observed in real-time and rely instead on self-report of past behavior. 

 

Studies of healthcare workers (HCWs) provide an opportunity to assess such proxies given the risk of 

occupational exposure and the ability to control for confounding factors. While the strength of 

evidence for the likelihood of  SARS-CoV-2 infection among HCWs and the dose received (often 

measured by directness or intensity of contact) trends toward a positive association, most studies to 

date are considered of low to moderate certainty due to limitations in methodology, such as recall 

bias, low participant numbers and participation rates, collinearity and failure to control for 

confounding variables [94–103]. 

 

An ongoing review of SARS-CoV-2 infection rates and risk factors in HCWs consistently found a wide 

range of SARS-CoV-2 infection incidence (0.4-50%) and seropositivity prevalence (2-32%), thought to 

be due to differences among studies in locations, exposures, community infection rates, control 

measures, among others  [94–99]. Risk factors for higher rates of infection include being a nurse or 

working in hospital non-emergency wards [104], lack of personal protective equipment or adequate 

handwashing, direct patient contact or care for COVID-19 patients, and presence during intubation 

[94]. Each of these risk factors support an association between exposure and dose and infection. 

Race or ethnicity (Black, Asian, ethnic minority, Hispanic) has also been reported as a risk factor for 

HCW infections [101–103,105], which may be due to job or community exposures. 

 

Rates of hospitalization and severe disease range from 0-14% and 1-10%, respectively [100]. 

Mortality rates in HCWs are less than 1% [100]. Seroprevalence in HCWs ranges from 4% in Asia to 

13-18% in North America [105,106]. There is a paucity of evidence to suggest that dose is associated 

with disease severity among HCWs. Studies among US HCWs have shown that they may have less 

severe illness despite higher risk of unprotected or repeated exposure, with rates of severe disease 

significantly lower in HCWs (10%) than in all COVID-19 positive patients (29%); the same is true for 

mortality rates (0.3% vs. 2.3%) [106]. Rather, age, a well-known host-related risk factor, was 
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associated with higher rates in HCWs over 50 years, with the highest rates in those over 70 years 

[107]. 

 

While infection and seropositivity rates suggest that HCWs are at greater risk than non-HCWs, these 

wide ranges illustrate the difficulty in using such measures to understand the nature of risk in the 

absence of information about community rates and exposures at and away from work. Most HCWs 

are young and healthy, which probably accounts for their low rates of severe disease and mortality. 

Higher fatality rates in HCWs over 50 years is consistent with disease outcomes in the general 

population, suggesting that dose is not associated with disease severity. 

 

DISCUSSION 

In this review, we sought to understand the relationships of dose to infection and disease severity by 

examining evidence from relevant animal models, clinical studies, and epidemiologic data. We found 

that there is some evidence of a relationship between dose and infection based on animal studies 

and human epidemiology but minimal data supporting a relationship between dose and disease 

severity. Instead, host responses and potentially viral genotype primarily determine disease 

outcomes. 

 

Animal studies are the method by which the relationships between dose, infection and disease 

severity will be further elucidated. Existing human clinical studies do not, in general, include or 

reveal information about the level of exposure or dose received. If the low median infectious dose of 

5 TCID50 found in one hamster study is relevant to humans [73], it would suggest that human dose 

response will be difficult to detect in non-experimental settings. 

 

Epidemiology data suggest an ill-defined dose-response relationship between SARS-CoV-2 and 

infection. Challenges include limited control for confounding factors, the potential for recall bias in 

retrospective studies, the potential for selection bias, low participation rates, inconsistencies across 

studies, and imprecise estimates of exposure and dose [103]. While human challenge studies and 

randomized controlled trials (RCTs) would provide the strongest evidence, researchers cannot 

ethically inoculate or randomize people to different SARS-CoV-2 doses. To quantify dose more fully, 

we recommend that future epidemiology studies assess and address as many of the proxies for dose 

as possible in reporting results. Disease severity should also be assessed objectively and consistently 

while recognizing that hospitalization rates and ICU admission are indicative of healthcare capacity, 
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rather than disease pathogenesis. Future research must account for variables such as simultaneous 

interventions, changes in testing criteria over time, treatment improvements, and host risk factors 

for severity.  

 

The complex interplay of host and virus is a much stronger determinant of disease severity than 

simply the size of the dose. Based on available evidence, once infection takes place, disease 

outcomes are a function of biological and physiologic response and defense mechanisms, which are 

host-dependent, and environmental factors, such as access to medical care and healthcare system 

capacity. Most animal models for SARS-CoV-2 replicate only mild to moderate respiratory disease 

outcomes, a few show more severe outcomes in aged animals. Studies in small animal models 

suggest that host factors are a strong determinant of disease severity. This is also supported by 

species-specific differential COVID-19 severity across different animal models experimentally 

infected with the same dose via the same route [108–113]. While disease outcomes in humans 

range from asymptomatic to mild to severe, including death, the most compelling factors associated 

with disease severity are certain host factors, such as age, sex, smoking, pregnancy and some 

comorbidities. It may be that less severe health outcomes are associated with lower doses, but there 

are few data to support that hypothesis in the human clinical studies conducted to date. 

 

Few data from clinical or epidemiologic studies conducted to date support the hypothesis that lower 

dose is associated with less severe health outcomes, being limited by inferring viral dose from 

inappropriate surrogates, ecological approaches that cannot control for potentially relevant 

confounding factors, and failure to longitudinally follow subjects for misclassification of 

asymptomatic infections. Epidemiologic studies could be more robust by the use of better 

measurement tools, such as genotyping and environmental sampling, and through greater efforts to 

control for confounding and selection and information biases. 

 

Thus, we conclude that while there is an association between SARS-CoV-2 dose and infection, data 

do not support a relationship between dose and COVID-19 severity. Non-pharmaceutical 

interventions may limit the inoculum dose from an exposure, thereby reducing the risk of infection, 

but they are unlikely to individually have an impact on COVID-19 severity [114,115]. 
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Figures 
 
Figure 1. SARS-CoV-2 transmission, exposure, and infection.  
 
Legend: A: Viral transmission and infection are complex, probabilistic processes. Concentration of 
infectious respiratory particles, exposure duration, and environmental, viral, and host conditions are 
critical for an infectious dose leading to SARS-CoV-2 infection. B: Once an individual is infected with 
SARS-CoV-2, shedding of virus RNA and viable virus ensue. Viral transmission relies heavily on the 
viral kinetics around symptom onset. The detection of SARS-CoV-2 RNA exceeds the detection of 
culturable or replication-competent virus. 
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